
h2oml — Introduction to commands for Stata integration with H2O machine learning

Description Remarks and examples References Also see

Description
This entry describes commands for performing predictive analysis using H2Omachine learning meth-

ods, specifically ensemble decision tree methods, in Stata. H2O is a scalable and distributed ma-

chine learning and predictive analytics platform that allows you to perform data analysis and ma-

chine learning. It provides parallelized implementations of many widely used supervised and unsu-

pervised machine learning methods. For more details, see [H2OML] H2O setup, [P] H2O intro, and

https://www.stata.com/h2o/h2o18/h2o_intro.html#what-is-h2o. For a software-free introduction to ma-

chine learning, see [H2OML] Intro.

Supervised learning

h2oml gbm gradient boosting machine

h2oml gbregress gradient boosting regression

h2oml gbbinclass gradient boosting binary classification

h2oml gbmulticlass gradient boosting multiclass classification

h2oml rf random forest

h2oml rfregress random forest regression

h2oml rfbinclass random forest binary classification

h2oml rfmulticlass random forest multiclass classification

Estimation results and postestimation frame

h2omlest store catalog H2O estimation results

h2omlpostestframe specify frame for postestimation analysis

Tuning and estimation summaries

h2omlestat metrics display performance metrics

h2omlgof goodness of fit for machine learning methods

h2omlestat cvsummary display cross-validation summary

h2omlestat gridsummary display grid-search summary

h2omlexplore explore models after grid search

h2omlselect select model after grid search

h2omlgraph scorehistory produce score history plot

1

https://www.stata.com/manuals/h2omlh2osetup.pdf#h2omlH2Osetup
https://www.stata.com/manuals/ph2ointro.pdf#pH2Ointro
https://www.stata.com/h2o/h2o18/h2o_intro.html#what-is-h2o
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbm
https://www.stata.com/manuals/h2omlh2omlgbregress.pdf#h2omlh2omlgbregress
https://www.stata.com/manuals/h2omlh2omlgbbinclass.pdf#h2omlh2omlgbbinclass
https://www.stata.com/manuals/h2omlh2omlgbmulticlass.pdf#h2omlh2omlgbmulticlass
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrf
https://www.stata.com/manuals/h2omlh2omlrfregress.pdf#h2omlh2omlrfregress
https://www.stata.com/manuals/h2omlh2omlrfbinclass.pdf#h2omlh2omlrfbinclass
https://www.stata.com/manuals/h2omlh2omlrfmulticlass.pdf#h2omlh2omlrfmulticlass
https://www.stata.com/manuals/h2omlh2omlest.pdf#h2omlh2omlest
https://www.stata.com/manuals/h2omlh2omlpostestframe.pdf#h2omlh2omlpostestframe
https://www.stata.com/manuals/h2omlh2omlestatmetrics.pdf#h2omlh2omlestatmetrics
https://www.stata.com/manuals/h2omlh2omlgof.pdf#h2omlh2omlgof
https://www.stata.com/manuals/h2omlh2omlestatcvsummary.pdf#h2omlh2omlestatcvsummary
https://www.stata.com/manuals/h2omlh2omlestatgridsummary.pdf#h2omlh2omlestatgridsummary
https://www.stata.com/manuals/h2omlh2omlexplore.pdf#h2omlh2omlexplore
https://www.stata.com/manuals/h2omlh2omlselect.pdf#h2omlh2omlselect
https://www.stata.com/manuals/h2omlh2omlgraphscorehistory.pdf#h2omlh2omlgraphscorehistory

h2oml — Introduction to commands for Stata integration with H2O machine learning 2

Performance after binary classification

h2omlestat threshmetric display threshold-based metrics

h2omlestat confmatrix display confusion matrix

h2omlgraph prcurve produce precision–recall curve plot

h2omlgraph roc produce ROC curve plot

Performance after multiclass classification

h2omlestat aucmulticlass display AUC and AUCPR summary

h2omlestat confmatrix display confusion matrix

h2omlestat hitratio display hit-ratio table

Prediction

h2omlpredict prediction of continuous responses, probabilities,
and classes

Machine learning explainability

h2omlgraph varimp produce variable importance plot

h2omlgraph pdp produce partial dependence plot

h2omlgraph ice produce individual conditional expectation plot

h2omlgraph shapvalues produce SHAP values plot for individual observations
after regression and binary classification

h2omlgraph shapsummary produce SHAP beeswarm plot after regression and
binary classification

Save decision tree

h2omltree save decision tree DOT file and display rule set

Remarks and examples
This entry describes Stata commands to perform predictive analysis using H2O machine learning en-

semble decision tree methods.

Remarks and examples are presented under the following headings:

Brief overview
h2oml in a nutshell
Tour of machine learning commands

Prepare your data for H2O machine learning in Stata
End-to-end binary classification analysis
Regression analysis
Effect of categorical predictors
Detecting nuisance predictors
Gradient boosting Poisson regression

https://www.stata.com/manuals/h2omlh2omlestatthreshmetric.pdf#h2omlh2omlestatthreshmetric
https://www.stata.com/manuals/h2omlh2omlestatconfmatrix.pdf#h2omlh2omlestatconfmatrix
https://www.stata.com/manuals/h2omlh2omlgraphprcurve.pdf#h2omlh2omlgraphprcurve
https://www.stata.com/manuals/h2omlh2omlgraphroc.pdf#h2omlh2omlgraphroc
https://www.stata.com/manuals/h2omlh2omlestataucmulticlass.pdf#h2omlh2omlestataucmulticlass
https://www.stata.com/manuals/h2omlh2omlestatconfmatrix.pdf#h2omlh2omlestatconfmatrix
https://www.stata.com/manuals/h2omlh2omlestathitratio.pdf#h2omlh2omlestathitratio
https://www.stata.com/manuals/h2omlh2omlpostestimation.pdf#h2omlh2omlpostestimationh2omlpredict
https://www.stata.com/manuals/h2omlh2omlgraphvarimp.pdf#h2omlh2omlgraphvarimp
https://www.stata.com/manuals/h2omlh2omlgraphpdp.pdf#h2omlh2omlgraphpdp
https://www.stata.com/manuals/h2omlh2omlgraphice.pdf#h2omlh2omlgraphice
https://www.stata.com/manuals/h2omlh2omlgraphshapvalues.pdf#h2omlh2omlgraphshapvalues
https://www.stata.com/manuals/h2omlh2omlgraphshapsummary.pdf#h2omlh2omlgraphshapsummary
https://www.stata.com/manuals/h2omlh2omltree.pdf#h2omlh2omltree

h2oml — Introduction to commands for Stata integration with H2O machine learning 3

Brief overview
The h2oml suite of Stata commands provides end-to-end support for H2O machine learning analysis

using ensemble decision tree methods. In addition to h2oml, the h2oframe command provides several

key subcommands that connect Stata to an H2O cluster, import a Stata dataset into an H2O frame, and

provide various H2O data management; see [H2OML] H2O setup.

h2oml gbm and h2oml rf provide the suite of estimation commands that implement gradient boosting

and random forest regression, binary classification, and multiclass classification. h2oml gbregress and

h2oml rfregress perform respective gradient boosting and random forest regressions for continuous

and count responses, h2oml gbbinclass and h2oml rfbinclass perform gradient boosting and ran-

dom forest classifications for binary responses, and h2oml gbmulticlass and h2oml rfmulticlass
perform gradient boosting and random forest classifications for categorical responses (with more than

two categories).

All commands provide the validframe() and cv() options to specify a validation frame and to per-

form cross-validation to control for overfitting, the tune() and stop() options to tune hyperparameters

and stop early for better model performance, the h2orseed() option to reproduce results, and many

more. Many commands also offer specialized options such as the loss() option of h2oml gbregress,
which specifies various loss functions, including quantile, Huber, and Tweedie. See [H2OML] h2oml

gbm and [H2OML] h2oml rf for details.

After estimation, the h2omlest suite of commands can be used to manage estimation results. For

instance, h2omlest store can be used to store the current estimation results for later use.

Several postestimation commands are available to obtain tuning and estimation summaries. For in-

stance, h2omlestat gridsummary is useful to view the results after tuning and select an alternative

model that is more parsimonious. And h2omlgraph scorehistory can be used to display various val-

idation curves to help monitor overfitting.

For binary and multiclass classifications, several commands can be used to explore model perfor-

mance such as the h2omlestat confmatrix command, which displays the confusion matrix. Addi-

tionally, h2omlgraph prcurve and h2omlgraph roc can be used to plot precision–recall and receiver

operating characteristic (ROC) curves after binary classification, and h2omlestat hitratio can be used
to produce a hit-ratio table after multiclass classification.

The ultimate goal of machine learning is to obtain accurate prediction of the response on the new data.

To achieve this goal, the model predictive performance is often evaluated by using an external, testing

dataset. The h2omlpostestframe command provides a convenient way to specify the desired testing

frame to be used in all subsequent postestimation analyses.

Depending on the estimation method, regression or classification, the h2omlpredict command pro-

duces predictions of continuous and count responses or class probabilities and classes.

Machine learning methods are often treated as a black box, meaning that little attempt is made to

understand the obtained predictions. To rectify this, h2oml provides several postestimation commands

to help explain predictions. The h2omlgraph varimp command can be used to assess the overall impor-

tance of predictors in the model, whereas the h2omlgraph shapvalues and h2omlgraph shapsummary
commands can be used to explore the impact of predictors on individual predictions.

Finally, the h2omltree command can be used to save a specific decision tree in a DOT file and plot it

by using the open source software Graphviz; see [H2OML] DOT extension.

For more details about postestimation commands, see [H2OML] h2oml postestimation.

https://www.stata.com/manuals/h2omlh2osetup.pdf#h2omlH2Osetup
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbm
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrf
https://www.stata.com/manuals/h2omlh2omlgbregress.pdf#h2omlh2omlgbregress
https://www.stata.com/manuals/h2omlh2omlrfregress.pdf#h2omlh2omlrfregress
https://www.stata.com/manuals/h2omlh2omlgbbinclass.pdf#h2omlh2omlgbbinclass
https://www.stata.com/manuals/h2omlh2omlrfbinclass.pdf#h2omlh2omlrfbinclass
https://www.stata.com/manuals/h2omlh2omlgbmulticlass.pdf#h2omlh2omlgbmulticlass
https://www.stata.com/manuals/h2omlh2omlrfmulticlass.pdf#h2omlh2omlrfmulticlass
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbm
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbm
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrf
https://www.stata.com/manuals/h2omldotextension.pdf#h2omlDOTextension
https://www.stata.com/manuals/h2omlh2omlpostestimation.pdf#h2omlh2omlpostestimation

h2oml — Introduction to commands for Stata integration with H2O machine learning 4

h2oml in a nutshell
In the previous section, we briefly described the functionality of the h2oml command. Here we will

provide a quick overview of some of the more common usages of this command in practice.

As we mentioned earlier, machine learning is primarily used to develop a model that accurately pre-

dicts a response of interest on the new data. In practice, several general steps are often performed to

build such a model.

At the beginning of the analysis, the data are often split into training data used for estimation and

validation data used for evaluating the model performance. Additionally, external testing data are also

available for assessing the model final predictive performance and comparing it with other models that

use a different machine learning method such as gradient boosting machine (GBM) or random forest. For

each method, models with different sets of hyperparameters are evaluated using a validation dataset (or

cross-validation), and the best model is chosen. The chosen models are further evaluated based on their

predictive performance on the testing data, and the final model is selected for later prediction on the

future new data.

Below, we describe several h2oml commands that can be used to perform the above steps.

Setup. To use the h2oml command, we must first initialize an H2O cluster and import our data to an H2O

frame; see Prepare your data for H2O machine learning in Stata and [H2OML] H2O setup. Here we load

the current Stata dataset into the H2O data frame and make it the current H2O frame.

. h2o init

. _h2oframe put, into(data)

. _h2oframe change data

Alternatively, we could replace the last two commands with h2oframe put, into(data) current
to put the dataset into an H2O frame and make this frame current in a single step.

Next we split the data frame into training and validation with, say, 80% of observations in the training

sample. We also specify the random-number seed for reproducibility and make the train frame be the

current H2O frame for estimation.

. _h2oframe split data, into(train valid) split(0.8 0.2) rseed(19)

. _h2oframe change train

Depending on the type of a response and the desired machine learning method, we can choose one

of the six h2oml commands to perform estimation: h2oml gbregress, h2oml gbbinclass, h2oml
gbmulticlass, h2oml rfregress, h2oml rfbinclass, and h2oml rfmulticlass.

Reference or baseline model. Suppose we have a binary response and we want to use GBM. We can

start with a simple reference model with default hyperparameters:

. h2oml gbbinclass response predictors, h2orseed(19) validframe(valid)

We specified the h2orseed(19) option to ensure H2O reproducibility; see [H2OML] H2O repro-

ducibility.

If we do not have sufficient observations to split the data into training and validation, we can use

cross-validation instead such as a 3-fold cross-validation with the default random splitting of the data

below:

. h2oml gbbinclass response predictors, h2orseed(19) cv(3)

https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesPrepareyourdataforH2OmachinelearninginStata
https://www.stata.com/manuals/h2omlh2osetup.pdf#h2omlH2Osetup
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility

h2oml — Introduction to commands for Stata integration with H2O machine learning 5

We store the current estimation results to use as a benchmark later.

. h2omlest store gbm_ref

User-specified hyperparameters and tuning. Next we can explore models with values of hyperparam-

eters other than the default ones. For instance, we can specify 200 trees instead of the default 50 and a

0.2 learning rate instead of the default 0.1. And we can specify different values for any of the other nine

hyperparameters; see Options in [H2OML] h2oml gbm.

. h2oml gbbinclass response predictors, h2orseed(19) cv(3)
> ntrees(200) lrate(0.2) ...

We store this model as

. h2omlest store gbm_user

In practice, it is difficult to know the actual hyperparameter values that provide the best model per-

formance, so an iterative procedure known as hyperparameter tuning is used to explore different ranges

of various hyperparameters to select the best set of values. To incorporate tuning, the h2oml estima-

tion commands allow you to specify the ranges (numlist) in options for hyperparameters and provide the

tune() option to control the tuning procedure.

Which hyperparameters should be tuned and what ranges should be explored will be specific to each

application. Here, for illustration purposes and continuing with our example, we will tune the number of

trees and the learning rate:

. h2oml gbbinclass response predictors, h2omlrseed(19) cv(3)
> ntrees(20(10)200) lrate(0.1(0.1)1)

We store this tuned model as

. h2omlest store gbm_tuned

If desired, we can change the default tuning metric (from log loss to, say, accuracy) and grid-search

method (from Cartesian to random) as well as specify other suboptions in the tune() option:

. h2oml gbbinclass response predictors, h2omlrseed(19) cv(3)
> ntrees(20(10)200) lrate(0.1(0.1)1)
> tune(metric(accuracy) grid(random) ...)

Checking for overfitting or underfitting. Before we proceed with model selection, we can check

for model overfitting or underfitting. We can use the h2omlgraph scorehistory command to plot

the metric values against the number of trees to compare the training and validation or cross-validation

curves:

. h2omlgraph scorehistory

The number of trees at which the two curves start noticeably diverging provides a tradeoff between

underfitting and overfitting.

Because we performed cross-validation, it is also useful to evaluate its performance. We can check

the variability of the metric values across the folds with

. h2omlestat cvsummary

High variation may indicate overfitting.

Our current model is gbm tuned, but we can repeat the above steps for the other two models by first
using the h2omlest restore command to restore their estimation results.

https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmOptionshyperparameter
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbm
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

h2oml — Introduction to commands for Stata integration with H2O machine learning 6

Selecting the “best” model. Our current gbm tunedmodel uses the hyperparameter values that resulted
in the smallest value of the default log loss metric. We can evaluate alternative models that may be more

parsimonious and thus may run faster:

. h2omlestat gridsummary

We can also explore the performance of additional metrics for different models before deciding on a

model. For instance, we can explore the top 10 models:

. h2omlexplore id = 1(1)10

If we find an alternative model that we think is best, we can switch to it by using

. h2omlselect id = #

where # is an index of the corresponding model from h2omlestat gridsummary.

To select between all the considered models with different hyperparameters such as gbm tuned and

gbm user, we select the one with the most optimal metric value, which is reported in the output of the
h2oml estimation commands. We can also use

. h2omlestat metrics

to report the performance metrics for the current estimation model.

And we can compare different metrics side by side for all models more easily by using

. h2omlgof gbm_tuned gbm_user gbm_ref

Evaluate predictive performance and compare differentmethods. Predictive performance of amodel

is typically evaluated on an external testing dataset. The h2omlpostestframe command provides a

convenient way of specifying a testing frame for all postestimation analyses:

. h2omlpostestframe test

Here test is our H2O testing frame. This command does not physically change the current frame

from train to test. It instead specifies that all relevant postestimation commands use the test frame

in the computations instead of their specific default frames, which may be training, validation, or cross-

validation depending on the estimation.

After binary or multiclass classification, we can evaluate model predictive performance by using the

confusion matrix:

. h2omlestat confmatrix

After binary classification, we can also explore thresholds that are optimal for various metrics

. h2omlestat threshmetric

Here we chose to use a GBM method. We can also consider using a random forest method. We would

repeat all the above steps but now using the rfbinclass command for estimation to select the best

random forest model, say rf tuned. We would then use the above commands to compare the predictive

performances of the two models or use

. h2omlgof gbm_tuned rf_tuned

to compare different performance metrics side by side. We can compare different methods using

precision–recall and ROC curves:

. h2omlgraph prcurve, models(gbm_tuned rf_tuned)

. h2omlgraph roc, models(gbm_tuned rf_tuned)

h2oml — Introduction to commands for Stata integration with H2O machine learning 7

Obtain predictions. Once the best model is chosen, we can use it to compute predictions. Depending on

the research question, we can compute predictions for an entirely new dataset, or we can use the original

data. Here we obtain predictions for our original data frame.

. _h2oframe change data

. h2omlpredict

Explain predictions. The h2oml suite provides several commands for explaining predictions. We can

evaluate overall predictors’ importance that quantifies the effect of each predictor on the model’s predic-

tions:

. h2omlgraph varimp

We can also use the partial dependence plot (PDP) and the individual conditional expectation (ICE)

plot to visually explore predictor dependence on the response:

. h2omlgraph pdp predictors

. h2omlgraph ice predictor

And, after regression and binary classification, we can use Shapley additive explanations (SHAP)

values to explore predictor contributions to the prediction of the response:

. h2omlgraph shapvalues

. h2omlgraph shapsummary

Tour of machine learning commands
In this section, we illustrate the usage of the h2oml command with applications to several real-world

datasets. We start by showing how to start an H2O cluster and convert your Stata dataset into an H2O

frame. We then illustrate the basic steps for training machine learning methods and provide predictions

for binary classification and for regression. We also explore the effect of categorical predictors on the

performance of ensemble decision tree methods and demonstrate how to use these methods to detect

important predictors. We also show a quick analysis of a count response by using a gradient boosting

Poisson regression.

Examples are presented under the following headings:

Prepare your data for H2O machine learning in Stata
End-to-end binary classification analysis

Example 1: Data setup
Example 2: Reference binary classification using GBM
Example 3: Model selection and hyperparameter tuning
Example 4: Method selection and prediction
Example 5: Classification prediction on new data
Example 6: Explaining classification prediction
Example 7: Shutting down the H2O cluster

Regression analysis
Example 8: Data setup
Example 9: Regression using random forest
Example 10: Hyperparameter tuning using random forest

Effect of categorical predictors
Example 11: Data setup
Example 12: Effect of categorical predictors on ensemble decision tree methods

Detecting nuisance predictors
Example 13: Detecting nuisance predictors with ensemble decision tree methods

Gradient boosting Poisson regression
Example 14: Explaining Poisson regression predictions

https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesPrepareyourdataforH2OmachinelearninginStata
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesEnd-to-endbinaryclassificationanalysis
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexzero
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexone
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlextwo
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexthree
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexthreeone
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexfour
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexfourhalf
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesRegressionanalysis
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexfivezero
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexfive
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexsix
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesEffectofcategoricalpredictors
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesgbmexcatvardata
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesgbmexcatvar
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesDetectingnuisancepredictors
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesrfexnuisfeat
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesGradientboostingPoissonregression
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplespoissonreg

h2oml — Introduction to commands for Stata integration with H2O machine learning 8

Prepare your data for H2O machine learning in Stata

Before using any of the H2O machine learning methods in Stata, you need to connect to or initialize

an H2O server by using the h2o init command. The command first checks whether an H2O cluster is

already running on the local machine and uses that cluster if so; otherwise, it attempts to start a new

cluster. For details, see [H2OML] H2O setup.

We first use the h2o init command to start an H2O cluster.

. h2o init

Suppose we have an external data.csv file saved in Stata’s current directory. We can import it as an

H2O frame by typing

. _h2oframe import data.csv, into(data)

or if we already have our data loaded into Stata, we can store it as an H2O frame by typing

. _h2oframe put, into(data)

In the above, we put our data into the H2O cluster as an H2O frame and called it data. To be able to
work with the data frame, we need to change it to be the current working frame:

. _h2oframe change data

Before starting any H2O analysis, we recommend that you describe the data to ensure that the H2O

variable types are as expected. This is important because the implementation of H2O machine learning

methods can vary depending on the types of the response and predictors.

. _h2oframe describe

Suppose our data have two variables: y and x. To run a regression for y on x using GBM with default

settings, we can now type

. h2oml gbregress y x

Or we can use random forest with default settings by typing

. h2oml rfregress y x

After estimation, we can use any postestimation command from [H2OML] h2oml postestimation.

End-to-end binary classification analysis

In this section, we provide an end-to-end analysis for a binary classification problem using gradient

boosting binary classification. The examples comprise tuning, performance analysis, and prediction

explainability.

Example 1: Data setup
Consider data from a fictional company, Telco, that provides home phone and internet services in

California. The data have been made available by IBM. We want to build a predictive model to predict

the behavior of a customer who is more likely to churn. churn.dta contains 7,043 observations and 26

variables. The binary response churn indicates whether a customer left within the last month or is still

using Telco’s services. The predictors include customers’ demographic information such as gender and

age, customers’ account information such as payment period and duration of services, customers’ service

types such as whether a customer signed up for internet, phone, device protection, etc.

https://www.stata.com/manuals/h2omlh2osetup.pdf#h2omlH2Osetup
https://www.stata.com/manuals/h2omlh2omlpostestimation.pdf#h2omlh2omlpostestimation
https://www.stata.com/manuals/h2omlh2omlgbbinclass.pdf#h2omlh2omlgbbinclass
https://www.stata.com/manuals/h2omlh2omlgbbinclass.pdf#h2omlh2omlgbbinclass
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesHyperparametertuning

h2oml — Introduction to commands for Stata integration with H2O machine learning 9

The goal of this example is to build a predictive model that will predict the behavior of a customer

who is more likely to churn or retain the company’s services.

As we described in Prepare your data for H2O machine learning in Stata, we start by reading the

dataset as an H2O frame. We then describe the frame to make sure that variables (H2O columns) have

the intended data types by using the h2oframe describe command. Recall that h2o init initiates

an H2O cluster and h2oframe put loads the current Stata dataset into an H2O frame. For details, see

[H2OML] H2O setup.

. use https://www.stata-press.com/data/r19/churn
(Telco customer churn data)
. h2o init
(output omitted)

. _h2oframe put, into(churn)
Progress (%): 0 100
. _h2oframe change churn
. _h2oframe describe

Rows: 7043
Cols: 26

Column Type Missing Zeros +Inf -Inf Cardinality

zipcode int 0 0 0 0
latitude real 0 0 0 0
longitude real 0 0 0 0
tenuremonths int 0 11 0 0
monthlycharges real 0 0 0 0
totalcharges real 11 0 0 0
country enum 0 7043 0 0 1
state enum 0 7043 0 0 1
city enum 0 4 0 0 1129
gender enum 0 3488 0 0 2
seniorcitizen enum 0 5901 0 0 2
partner enum 0 3641 0 0 2
dependents enum 0 5416 0 0 2
phoneservice enum 0 682 0 0 2
multiplelines enum 0 3390 0 0 3
internetserv enum 0 2421 0 0 3
onlinesecurity enum 0 3498 0 0 3
onlinebackup enum 0 3088 0 0 3
deviceprotect enum 0 3095 0 0 3
techsupport enum 0 3473 0 0 3
streamtv enum 0 2810 0 0 3
streammovie enum 0 2785 0 0 3
contract enum 0 3875 0 0 3
paperlessbill enum 0 2872 0 0 2
paymethod enum 0 1544 0 0 4
churn enum 0 5174 0 0 2

For definitions of data types in H2O, see https:/www.stata.com/h2o/h2oframe_intro.html. Specifi-

cally, enum refers to categorical or factor columns in an H2O frame, real to numeric columns with

float or double values, and int to numeric columns with integer values. For example, here churn
has the expected type enum. If the data types are incorrect, h2oframe provides commands to convert

an H2O frame column to the desired data type; see https://www.stata.com/h2o/h2oframe.html. You may

notice that the predictor totalcharges has 11 missing values. As we discussed in Decision trees of

[H2OML] Intro, tree-based methods naturally handle missing values.

https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesPrepareyourdataforH2OmachinelearninginStata
https://www.stata.com/manuals/h2omlh2osetup.pdf#h2omlH2Osetup
https:/www.stata.com/h2o/h2oframe_intro.html
https://www.stata.com/h2o/h2oframe.html
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesDecisiontrees
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro

h2oml — Introduction to commands for Stata integration with H2O machine learning 10

Next we split our data into training and testing frames with 80% of observations in the training sample.

We will use cross-validation on training data during estimation to control for overfitting.

. _h2oframe split churn, into(train test) split(0.8 0.2) rseed(19)

. _h2oframe change train

Example 2: Reference binary classification using GBM
As we discussed in Model selection in machine learning of [H2OML] Intro, the analysis should start

by defining a baseline or reference performance.

For classification problems, it is recommended to first check whether the dataset is imbalanced.

. tabulate churn
Churning

status Freq. Percent Cum.

No 5,174 73.46 73.46
Yes 1,869 26.54 100.00

Total 7,043 100.00

Our dataset suffers from imbalance. Therefore, we will use the stratification method for cross-

validation to ensure that the cross-validation samples maintain the same data imbalance. Following the

literature on measuring performance for imbalanced data (Davis and Goadrich 2006), we will use area

under the precision–recall curve (AUCPR) as a performance metric in our analysis.

Next, for convenience, let’s create a global macro, predictors, in Stata to store the names of pre-

dictors.

. global predictors latitude longitude tenuremonths monthlycharges totalcharges
> gender seniorcitizen partner dependents phoneservice multiplelines
> internetserv onlinesecurity onlinebackup streamtv techsupport streammovie
> contract paperlessbill paymethod deviceprotect

https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesModelselectioninmachinelearning
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionOptionsaucpr
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionOptionsaucpr

h2oml — Introduction to commands for Stata integration with H2O machine learning 11

As a reference model, we fit a GBM model with a 3-fold stratified cross-validation and default values

for other settings. We specify the h2orseed(19) option for reproducibility; see [H2OML] H2O repro-

ducibility.

. h2oml gbbinclass churn $predictors, h2orseed(19) cv(3, stratify)
Progress (%): 0 42.5 87.0 100
Gradient boosting binary classification using H2O
Response: churn
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 5,643
Cross-validation = 5,643

Cross-validation: Stratify Number of folds = 3
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .3293387 .411338
Mean class error .1603572 .2338787

AUC .9163226 .8500772
AUCPR .8023966 .6584908

Gini coefficient .8326452 .7001545
MSE .1034999 .1350446

RMSE .321714 .3674841

For detailed interpretation of the output, see example 1 of [H2OML] h2oml gbm.

Although we are mainly interested in cross-validation metrics, we still need to examine the training

metrics to make sure that we slightly overfit the training data to avoid underfitting. The latter can be

checked by exploring the difference between training and cross-validation metrics, which should be

positive for the AUCPR metric. However, if the difference between the validation and training metrics is

large, it indicates that the model is too tailored to the training data and may not generalize well to new

data. In the literature, there is no clear recommendation on how large the difference between training and

validation metrics should be to indicate severe overfitting. Each case should be evaluated individually

and with caution. For details, see Valdenegro-Toro and Sabatelli (2023). In our example, the positive

difference between the training and cross-validation AUCPR values suggests that our model does overfit

the training data. The cross-validation AUCPR for the reference model is approximately 0.658.

We store the reference estimation results for later comparison using the h2omlest store command.

. h2omlest store gbm_default

https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbm
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesk-foldcross-validation
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmdefault
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbm
https://www.stata.com/manuals/h2omlh2omlest.pdf#h2omlh2omlest

h2oml — Introduction to commands for Stata integration with H2O machine learning 12

It is helpful to assess the variance of each metric over the folds to ensure that the model performance

does not depend on the specific split of the data. Large variation of the cross-validation metrics over the

folds may lead to poor generalization of the model to new data. In such cases, it is recommended to adjust

the number of folds or examine the data to identify the sources of variability. We can use h2omlestat
cvsummary to display cross-validation summary.

. h2omlestat cvsummary
Cross-validation summary using H2O

Metric Mean Std. dev. Fold 1 Fold 2

Log loss .4113427 .0038855 .4085804 .4157856
F1 .6401071 .0044256 .6358885 .6397188
F2 .6954293 .0055981 .6891994 .6970509

F0.5 .5929428 .0039657 .5902329 .591101
Accuracy .7806169 .0012531 .7793031 .7817988

Precision .5651822 .0039084 .5632716 .5625966
Recall .7379531 .0069124 .73 .7413442

Specificity .7959458 .0011321 .7969871 .7961095
Misclassification .2193831 .0012531 .2206969 .2182012
Mean class error .2330506 .0029933 .2365065 .2312731
Max. class error .2620469 .0069124 .27 .2586558

Mean class accuracy .7669494 .0029933 .7634935 .7687268
Misclassification count 412.6667 4.618802 418 410

AUC .8505131 .0040418 .8526636 .8458507
AUCPR .6597555 .0045358 .6628664 .654551

MSE .1350454 .0017733 .1340862 .1370917
RMSE .3674799 .0024083 .3661779 .370259

Metric Fold 3

Log loss .4096621
F1 .6447141
F2 .7000377

F0.5 .5974944
Accuracy .7807487

Precision .5696784
Recall .742515

Specificity .7947407
Misclassification .2192513
Mean class error .2313722
Max. class error .257485

Mean class accuracy .7686278
Misclassification count 410

AUC .8530251
AUCPR .6618491

MSE .1339582
RMSE .3660029

In our example, the variation of the cross-validation metrics across folds, that is,AUCPR, is small. The

mean value of the cross-validation AUCPR is around 0.660, which is slightly different from the cross-

validation AUCPR of 0.658 reported by h2oml gbbinclass. This difference is expected because of how

h2oml — Introduction to commands for Stata integration with H2O machine learning 13

the two commands compute cross-validation metrics. h2omlestat cvsummary computes metrics sepa-

rately for each fold and reports their average value, whereas h2oml gbbinclass combines all folds into

one and computes a single AUCPR value.

Example 3: Model selection and hyperparameter tuning
Hyperparameters, such as the number of trees and learning rate, control the performance of a ma-

chine learning model. Choosing the “right” hyperparameters can substantively improve both the model

performance and its ability to be generalized to new data. Poorly selected hyperparameters, on the other

hand, can lead to underfitting or overfitting. The process of selecting hyperparameters to achieve optimal

model performance is known as hyperparameter tuning.

In example 5 of [H2OML] h2oml gbm, we demonstrated the detailed steps of hyperparameter tuning

for this example. Here we use the final selected model:

. h2oml gbbinclass churn $predictors, h2orseed(19) cv(3, stratify)
> ntrees(100) lrate(0.05) predsamprate(0.15)
Progress (%): 0 36.0 71.2 89.4 100
Gradient boosting binary classification using H2O
Response: churn
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 5,643
Cross-validation = 5,643

Cross-validation: Stratify Number of folds = 3
Model parameters
Number of trees = 100 Learning rate = .05

actual = 100 Learning rate decay = 1
Tree depth: Pred. sampling rate = .15

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .3531063 .4026141
Mean class error .1784776 .2313897

AUC .8992847 .8565935
AUCPR .7610732 .673929

Gini coefficient .7985693 .7131869
MSE .1126847 .1314475

RMSE .3356854 .3625569

By tuning, we increased the cross-validation AUCPR from 0.658 to 0.674. The improvement is small,

because we explored only a small portion of the hyperparameter space in this example. Hyperparameter

tuning is an iterative process that requires many iterations to sufficiently explore the hyperparameter

space.

https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmtune
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbm
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesHyperparametertuning
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesHyperparametertuning

h2oml — Introduction to commands for Stata integration with H2O machine learning 14

Let’s compare the best model, which we store as gbm tuned, with the reference model from the

previous example based on other metrics by using the h2omlgof command.

. h2omlest store gbm_tuned

. h2omlgof gbm_default gbm_tuned
Performance metrics for model comparison using H2O
Training frame: train

gbm_def~t gbm_tuned

Training
No. of observations 5,643 5,643

Log loss .3293387 .3531063
Mean class error .1603572 .1784776

AUC .9163226 .8992847
AUCPR .8023966 .7610732

Gini coefficient .8326452 .7985693
MSE .1034999 .1126847

RMSE .321714 .3356854

Cross-validation
No. of observations 5,643 5,643

Log loss .411338 .4026141
Mean class error .2338787 .2313897

AUC .8500772 .8565935
AUCPR .6584908 .673929

Gini coefficient .7001545 .7131869
MSE .1350446 .1314475

RMSE .3674841 .3625569

In the output, the first section reports the training results, and the second section reports the cross-

validation results. Looking at the cross-validation results, we see that tuning improved the model per-

formance for all metrics. The log loss, mean of per-class error rates, mean squared error (MSE), and root

mean squared error (RMSE) are all smaller for the tuned model, whereas area under the curve (AUC),

AUCPR, and the Gini coefficient are larger for the tuned model, all of which indicate better performance.

In addition to tuning, we may also refine the list of predictors based on variable importance.

. h2omlgraph varimp

POMJOFCBDLVQ

NPOUIMZDIBSHFT

UFDITVQQPSU

QBZNFUIPE

EFQFOEFOUT

JOUFSOFUTFSW

POMJOFTFDVSJUZ

UPUBMDIBSHFT

DPOUSBDU

UFOVSFNPOUIT

��� �� ���
1SPQPSUJPO�JNQPSUBODF

7BSJBCMF�JNQPSUBODF�QMPU�VTJOH�)�0

Based on the above graph, we may decide to drop the predictor onlinebackup.

https://www.stata.com/manuals/h2omlh2omlgof.pdf#h2omlh2omlgof

h2oml — Introduction to commands for Stata integration with H2O machine learning 15

Variable selection with cross-validation requires careful implementation to avoid so-called data leak-

age, where the training data contain information that would not be available during prediction on the

testing data; see Raschka (2020) for details.

Example 4: Method selection and prediction
In example 5 of [H2OML] h2oml gbm, we used hyperparameter tuning to select the best GBM model.

Instead of GBM, we may consider other methods such as random forest or logistic regression. In this

example, we compare GBM and random forest.

Instead of tuning the random forest model following similar steps from example 5 of [H2OML] h2oml

gbm, for simplicity, we pretend that the following model is our tuned model for random forest. We also

store the working model as rf tuned by using the h2omlest store command.

. h2oml rfbinclass churn $predictors, h2orseed(19) cv(3, stratify)
> ntrees(200) minobsleaf(2)
Progress (%): 0 7.1 14.1 19.8 24.8 56.2 75.0 79.8 84.7 89.4 93.9 100
Random forest binary classification using H2O
Response: churn
Frame: Number of observations:

Training: train Training = 5,643
Cross-validation = 5,643

Cross-validation: Stratify Number of folds = 3
Model parameters
Number of trees = 200

actual = 200
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 16 No. of bins cat. = 1,024
avg = 19.6 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 2 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .4153088 .416142
Mean class error .2396365 .230295

AUC .8507327 .8453018
AUCPR .6526923 .6452846

Gini coefficient .7014654 .6906036
MSE .1335578 .1358418

RMSE .3654556 .3685673

. h2omlest store rf_tuned

To choose the best method, we compute performance metrics using the testing frame. To compute

AUCPR for the testing frame, we use the h2omlpostestframe command to specify the name of the

frame, test in our case, to be used by a subset of postestimation commands for computations.

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)

https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmtune
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbm
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbm
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbm
https://www.stata.com/manuals/h2omlh2omlpostestframe.pdf#h2omlh2omlpostestframe

h2oml — Introduction to commands for Stata integration with H2O machine learning 16

By default, the specified frame is considered to be a testing frame and is labeled as “Testing” in the

output, but you can specify your own label by using the framelabel() option. To report the metrics for

the selected testing frame, we use the h2omlestat metrics command.

. h2omlestat metrics
Performance metrics using H2O
Random forest binary classification
Response: churn
Testing frame: test
Number of observations = 1,400

Metric Testing

Log loss .4101135
Mean class error .2241742

AUC .85292
AUCPR .6847162

Gini coefficient .70584
MSE .1328891

RMSE .3645396

We next compute the metrics for the testing frame for the GBM model after restoring its estimation

results.

. h2omlest restore gbm_tuned
(results gbm_tuned are active now)
. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)
. h2omlestat metrics
Performance metrics using H2O
Gradient boosting binary classification
Response: churn
Loss: Bernoulli
Testing frame: test
Number of observations = 1,400

Metric Testing

Log loss .3964014
Mean class error .2030941

AUC .8649185
AUCPR .6963289

Gini coefficient .7298371
MSE .1284349

RMSE .3583782

h2oml — Introduction to commands for Stata integration with H2O machine learning 17

We can compare the results side by side more easily by using the h2omlgof command.

. h2omlgof rf_tuned gbm_tuned
Performance metrics for model comparison using H2O
Testing frame: test

rf_tuned gbm_tuned

Testing
No. of observations 1,400 1,400

Log loss .4101135 .3964014
Mean class error .2241742 .2030941

AUC .85292 .8649185
AUCPR .6847162 .6963289

Gini coefficient .70584 .7298371
MSE .1328891 .1284349

RMSE .3645396 .3583782

Based on this example, GBM outperforms random forest because AUCPR for GBM is higher. Thus,

we choose GBM as our selected best method. We can also compare methods (or models) based on ROC

curves, which plots the true-positive rate versus false-positive rate for different thresholds. The closer

the curve to the upper left corner, the better the model fit. Because the test frame has been set for both

models, the reported results correspond to the testing frame. For details, see [H2OML] h2omlgraph roc.

. h2omlgraph roc, models(gbm_tuned rf_tuned)

�

��

��

��

��

�

5S
VF

�Q
PT
JUJ
WF
�SB

UF

� �� �� �� �� �
'BMTF�QPTJUJWF�SBUF

HCN@UVOFE
SG@UVOFE
3FGFSFODF

HCN@UVOFE�"6$����������SG@UVOFE�"6$��������
5FTUJOH�GSBNF��UFTU

30$�DVSWFT�VTJOH�)�0

Based on the ROC results, as we expected, the GBM method slightly outperforms the random forest

method.

https://www.stata.com/manuals/h2omlh2omlgraphroc.pdf#h2omlh2omlgraphroc
https://www.stata.com/manuals/h2omlh2omlgraphroc.pdf#h2omlh2omlgraphroc
https://www.stata.com/manuals/h2omlh2omlgraphroc.pdf#h2omlh2omlgraphroc

h2oml — Introduction to commands for Stata integration with H2O machine learning 18

Another popular approach to compare classification predictions between different methods and mod-

els is by using a confusion matrix, which reports the numbers of correctly and incorrectly predicted

outcomes. Below, we use h2omlestat confmatrix to produce the confusion matrix after the GBM

estimation for the testing frame we selected earlier with h2omlpostestframe.

. h2omlestat confmatrix
Confusion matrix using H2O
Testing frame: test

Predicted
churn No Yes Total Error Rate

No 754 269 1,023 269 .263
Yes 54 323 377 54 .143

Total 808 592 1,400 323 .231
Note: Probability threshold .2378 that maximizes F1

metric used for classification.

In H2O, the “positive” class corresponds to the second label in lexicographical order, which in our

case is Yes. To see the levels of the categorical variable, type

. _h2oframe levelsof churn
‘”No”’ ‘”Yes”’

From the output, 323 and 754 correspond to true-positive and true-negative responses, respectively,

and the misclassification error rate is 0.231. By default, the threshold for binary classification of 0.2378

is selected based on maximizing the F1 metric. Observations with predicted values above this threshold

will be classified as “Yes”, and the remaining observations will be classified as “No”. You may want

to see the results based on a different metric. For instance, consider a scenario where a company uses

predictions to offer additional discounts or free services to customers who are likely to churn. If these

benefits are costly, the company would prioritize predictions that maximize precision. To report the

confusion matrix using a different metric, use the metric() option.

We encourage you to perform the same analysis for the rf tuned model to verify that GBM indeed

outperforms random forest on the testing frame.

https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionOptionsprecision

h2oml — Introduction to commands for Stata integration with H2O machine learning 19

Example 5: Classification prediction on new data
Continuing with example 4, suppose the company collected new data stored in newchurn.dta. It

wants to predict the probability of churn for these new customers based on the GBM model gbm tuned.

Let’s read the new dataset as an H2O frame and list the first two observations to see some of the new

data by using the h2oframe list command.

. use https://www.stata-press.com/data/r19/newchurn
(Telco customer churn new data)
. _h2oframe put, into(newchurn) replace
Progress (%): 0 100
. _h2oframe change newchurn
. _h2oframe list in 1/2

zipcode latitude longitude tenure~s monthlyc~s totalcharges
1 95670 38.6027222 -121.2799149 49 75.1999969 3678.3000488
2 91737 34.2452888 -117.6425018 4 88.8499985 372.4500122

country state city gender senior~n partner
1 United States California Rancho Cordova Male No No
2 United States California Rancho Cucamonga Female Yes No

depend~s phones~e multip~s internets~v online~y online~p device~t
1 No Yes Yes Fiber optic No No No
2 No Yes Yes Fiber optic No No Yes

techsu~t streamtv stream~e contract paperl~l paymethod
1 No No No Month to month No Credit card
2 No No Yes Month to month Yes Electronic check
[2 rows x 25 columns]

The probabilities of churning and the corresponding classes can be predicted by using the

h2omlpredict command. By default, this command predicts classes after classification. To predict

probabilities instead, we need to specify the pr option with h2omlpredict. In example 4, we used

h2omlpostestframe to set the postestimation frame to test for the gbm tuned model. To obtain pre-

dictions for the new dataset, specify the frame(newchurn) option with h2omlpredict. Below, we

predict both classes and probabilities for the new dataset using the gbm tuned model.

. h2omlest restore gbm_tuned
(results gbm_tuned are active now)
. h2omlpredict churnhat, frame(newchurn)
(option class assumed; predicted class)
Progress (%): 0 100
. h2omlpredict churnprob*, frame(newchurn) pr
Progress (%): 0 100

https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexthree
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexthree

h2oml — Introduction to commands for Stata integration with H2O machine learning 20

By default, the threshold that maximizes the F1metric is used to predict classes based on the predicted

probabilities. You can specify a different value for the threshold using the threshold() option. To

display the threshold values that maximize or minimize different classification metrics, we type

. h2omlestat threshmetric
Maximum or minimum metrics using H2O
Testing frame: test

Metric Max/Min Threshold

F1 .6667 .2378
F2 .7816 .1496

F0.5 .6659 .5142
Accuracy .8171 .5142

Precision 1 .9081
Recall 1 .0236

Specificity 1 .9081
Min. class accuracy .7849 .2905
Mean class accuracy .7969 .2378

True negatives 1023 .9081
False negatives 0 .0236 +
True positives 377 .0236

False positives 0 .9081 +
True-negative rate 1 .9081

False-negative rate 0 .0236 +
True-positive rate 1 .0236

False-positive rate 0 .9081 +
MCC .5332 .2378

+ identifies minimum metrics.

The table above displays the set of classification metrics with the corresponding best thresholds; see

[H2OML] h2omlestat threshmetric. In the reported table, the thresholds provide the best cutpoints for

the classification based on the predicted probabilities such that the corresponding metric is optimal. For

example, for Precision, the best threshold is 0.9081. For the definition of metrics, see [H2OML] met-

ric option.

The generated variables for the classes and class probabilities are available in the newchurn frame,

because we specified frame(newchurn). Let’s list a few values for the predicted classes and probabili-

ties.

. _h2oframe list churnhat churnprob*
churnhat churnp~1 churnp~2

1 No .7780746 .2219254
2 Yes .2161581 .7838419
3 No .9001728 .0998272
4 No .8937768 .1062232
5 No .8101463 .1898537
6 Yes .2203342 .7796658
7 No .8987335 .1012665
8 Yes .4977883 .5022117
[8 rows x 3 columns]

https://www.stata.com/manuals/h2omlh2omlestatthreshmetric.pdf#h2omlh2omlestatthreshmetric
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option

h2oml — Introduction to commands for Stata integration with H2O machine learning 21

The variables (H2O columns) churnhat, churnprob1, and churnprob2 contain the predicted classes
and the corresponding predicted probabilities of not churning or churning. In our example, for instance,

there is only a 22% chance that the first customer will churn compared with a 78% chance of churning

for the second customer.

Example 6: Explaining classification prediction
In this example, we try to answer one of the fundamental questions of machine learning: Why does

my model predict what it predicts? In machine learning, explainability refers to the ability of the method

to describe how a model arrives at a specific prediction in a way that is understandable to humans.

This is important to ensure that, under certain conditions, predictions are not only accurate but also

understandable and justifiable.

From Interpretation and explanation in [H2OML] Intro, there are two types of explainability methods:

local and global. Local models explain individual predictions and approximate the machine learning

model in the vicinity of one observation. The popular methods include ICE curves and SHAP values,

which can be obtained by using the h2omlgraph ice and h2omlgraph shapvalues commands. A

global model describes an average behavior of a machine learning model. PDPs, variable importance,

and global surrogate models are some of the popular choices.

We start with global methods and then switch to local methods. In example 4, we selected gbm tuned
as the best model. In this example, we want to explore predictions for the original churn dataset (without
splitting it into training and testing frames). We start by restoring the gbm tuned model:

. h2omlest restore gbm_tuned
(results gbm_tuned are active now)

Now we use h2omlpredict to predict classes for the entire churn dataset. We specify the

frame() option to obtain predictions for the churn frame instead of the test frame we selected with

h2omlpostestframe earlier in example 4.

. h2omlpredict churnhat, frame(churn)
(option class assumed; predicted class)

We use these predictions to build global surrogate models, which are some of the simplest global

explainable methods. They approximate the prediction of a machine learning model, churnhat in our

case, using a model that is easier to interpret such as a decision tree. See Global surrogate models in

[H2OML] Intro.

To demonstrate, we use a classification tree with maximum depth equal to, say, 3 and other parameters

at their default values as a global surrogate model. In practice, the depth of the tree and other parameters

should be treated as hyperparameters and learned from data. To obtain one classification tree, we use the

ntrees(1) option with h2oml rfbinclass.

https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesInterpretationandexplanation
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexthree
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesGlobalsurrogatemodels
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesClassificationtrees
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrf

h2oml — Introduction to commands for Stata integration with H2O machine learning 22

In example 1, we set our working frame as train. Thus, before running the estimation command

h2oml rfbinclass on the churn dataset, we need to physically change the working frame to churn by

using the h2oframe change command.

. _h2oframe change churn

. h2oml rfbinclass churnhat $predictors, h2orseed(19) ntrees(1) maxdepth(3)
Progress (%): 0 100
Random forest binary classification using H2O
Response: churnhat
Frame: Number of observations:

Training: churn Training = 2,523
Model parameters
Number of trees = 1

actual = 1
Tree depth: Pred. sampling value = -1

Input max = 3 Sampling rate = .632
min = 3 No. of bins cat. = 1,024
avg = 3.0 No. of bins root = 1,024
max = 3 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .4182261
Mean class error .1828537

AUC .8678704
AUCPR .727738

Gini coefficient .7357409
MSE .1378874

RMSE .3713319

https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexzero

h2oml — Introduction to commands for Stata integration with H2O machine learning 23

It is easier to interpret the results from a classification tree visually. The steps on how to obtain an

image from the DOT file are provided in [H2OML] DOT extension. We follow those steps to display

the classification tree below; see [H2OML] h2omltree. The dotsaving() option of the h2omltree
command generates and saves a DOT file, which can be used to plot the classification tree using the

Graphviz software, see https://graphviz.org.

. h2omltree, dotsaving(churntree.dot, replace
> title(Surrogate tree for class ”No”))

Surrogate tree for class "No"
onlinebackup

onlinesecurity

No

onlinesecurity

[NA]
No Internet service

Yes

paperlessbill

[NA]
No

No Internet service

tenuremonths

Yes

tenuremonths

No

contract

[NA]
No Internet service

Yes

0.23

[NA]
Yes

0.364

No

0.541

< 21.5

0.88

[NA]
>= 21.5

0.357

[NA]
< 43.5

0.798

>= 43.5

0.798

Month to month

0.997

[NA]
One year
Two year

The NA’s on the tree indicate the split for the missing values, if any. The values of the terminal nodes

can be interpreted as probabilities of class No. For example, the highest-predicted probability of not

churning (0.997) or the lowest probability of churning (1−0.997 = 0.003) occurs for the customers who

have a one- or two-year contract with the company and are either not subscribed to any internet services

or use online backup and online security services.

In example 3, we used h2omlgraph varimp to display important predictors for the gbm tunedmodel.
We use some of these important predictors to produce PDP. PDP is a global explainable method that shows

the marginal effect that the specified predictors have on the predicted outcome of a machine learning

model (gbm tuned here); see [H2OML] h2omlgraph pdp.

https://www.stata.com/manuals/h2omldotextension.pdf#h2omlDOTextension
https://www.stata.com/manuals/h2omlh2omltree.pdf#h2omlh2omltree
https://graphviz.org
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlextwo
https://www.stata.com/manuals/h2omlh2omlgraphpdp.pdf#h2omlh2omlgraphpdp
https://www.stata.com/manuals/h2omlh2omlgraphpdp.pdf#h2omlh2omlgraphpdp

h2oml — Introduction to commands for Stata integration with H2O machine learning 24

Our current estimation results are from the h2oml rfbinclass command, so we first use h2omlest
restore to restore the gbm tuned estimation results. Next we use h2omlpostestframe with the

notest option to specify that the churn frame be used by the subsequent postestimation commands

but not considered a testing frame.

. h2omlest restore gbm_tuned
(results gbm_tuned are active now)
. h2omlpostestframe churn, notest
(frame churn is now active for h2oml postestimation)
. h2omlgraph pdp contract tenuremonths onlinesecurity techsupport, combine
Progress (%): 0 75.0 100

��

���

��

���

��

1B
SUJ
BM
�E
FQ

FO
EF

OD
F

.POUI�UP�NPOUI 0OF�ZFBS 5XP�ZFBS
DPOUSBDU

���

��

���

��

���

1B
SUJ
BM
�E
FQ

FO
EF

OD
F

� �� �� �� ��
UFOVSFNPOUIT

���

���

���

���

���

���

1B
SUJ
BM
�E
FQ

FO
EF

OD
F

/P /P�JOUFSOFU�TFSWJDF :FT
POMJOFTFDVSJUZ

���

���

���

���

���

1B
SUJ
BM
�E
FQ

FO
EF

OD
F

/P /P�JOUFSOFU�TFSWJDF :FT
UFDITVQQPSU

'SBNF��DIVSO

1BSUJBM�EFQFOEFODF�QMPU�VTJOH�)�0

The PDP pattern (red line in the plot) agrees with the results from the surrogate tree. For instance, the

probability of churning (shown on the 𝑦 axis) decreases for customers with a one- or two-year contract

(contract) and for customers who use the company’s services longer (tenuremonths).

For local explainability, we can use SHAP values. A SHAP value estimates the contribution of each

predictor to the prediction for an individual observation. Let’s consider observation 19 and explain its

prediction from the gbm tuned model. Below, we list some of the predictors for this observation, which

corresponds to a female customer who used a month-to-month contract service for 9 months and has both

the observed churn and predicted churnhat values of Yes.

. _h2oframe list churn churnhat contract totalcharges onlinesecurity
> tenuremonths gender in 19

churn churnhat contract totalc~s online~y tenure~s gender
1 Yes Yes Month to month 857.25 No 9 Female
[1 row x 7 columns]

h2oml — Introduction to commands for Stata integration with H2O machine learning 25

We now use h2omlgraph shapvalues to produce SHAP values for observation 19 for the top 10

SHAP-important predictors.

. h2omlgraph shapvalues, obs(19) top(10) xlabel(-2.5(0.5)2)

������

������

������

������

������

������

�����

������

������

������

������
ƒ	Y
��������

&<ƒ	Y
>���������
3FNBJOJOH�QSFEJDUPST

QBQFSMFTTCJMM���/P
TUSFBNUW���:FT

POMJOFTFDVSJUZ���/P
MBUJUVEF�����������

QBZNFUIPE���&MFDUSPOJD�DIFDL
QBSUOFS���/P

UFOVSFNPOUIT����
JOUFSOFUTFSW���'JCFS�PQUJD

DPOUSBDU���.POUI�UP�NPOUI
EFQFOEFOUT���:FT

1S
FE

JD
UP
S

���� �� ���� �� ��� � �� � ��� �
4)"1�DPOUSJCVUJPO

0CT��������QSFEJDUJPO���:FT
'SBNF��DIVSO

4)"1�WBMVFT�VTJOH�)�0

The blue bars show predictors that increase probability of churn, and red bars indicate the opposite.

The SHAP values agree with previous findings. Month-to-month contract, small tenuremonths, and
not using online security services contribute positively to this particular customers’ churning. On the

other hand, having a dependent contributes to retaining this particular customer to continue using the

company’s services.

We can also display the SHAP summary plot, also known as a beeswarm plot, for all observations and

predictors. The beeswarm plot shows both the magnitudes of SHAP values, which represent the contribu-

tion of a predictor to a particular prediction, and the SHAP-value distribution across many observations.

This allows you to quickly see which predictors are most important and how they influence the response.

For illustration purposes, we plot SHAP values for the top 4 SHAP-important predictors.

. h2omlgraph shapsummary, top(4) rseed(19)

JOUFSOFUTFSW

UFOVSFNPOUIT

EFQFOEFOUT

DPOUSBDU

1S
FE

JD
UP
S

���� �� ��� � �� �
4)"1�DPOUSJCVUJPO

�

�

/
PS
N
BM
J[
FE

�Q
SF
EJ
DU
PS
�W
BM
VF

'SBNF��DIVSO

4)"1�TVNNBSZ�VTJOH�)�0

https://www.stata.com/manuals/h2omlh2omlgraphshapvalues.pdf#h2omlh2omlgraphshapvaluesRemarksandexamplesshapimport

h2oml — Introduction to commands for Stata integration with H2O machine learning 26

In the figure, the color map, titled as “Normalized predictor value”, indicates colors of the normalized

values of the predictors. For example, if a variable is not of the data type enum, such as tenuremonths,
then the smallest normalized variable value will be given a lighter blue color, and, as the values increase,

the color gradient will change from blue to red for the largest value of 1. Similarly, for a categorical

variable (enum), such as contract, the base level of the predictor will be given a lighter blue color,

and the color will change from blue to red according to the categories. Within each level, the observa-

tions are jittered for presentational purposes. To check the levels of a categorical variable (for example,

contract), type

. _h2oframe levelsof contract
‘”Month to month”’ ‘”One year”’ ‘”Two year”’

The predictors displayed on the 𝑦 axis are ranked based on SHAP predictor importance: predictors

with large absolute SHAP values are listed in descending order. From the SHAP summary plot, for the

contract predictor, a smaller value, which corresponds to the month-to-month option, increases the

probability of churn, and this probability decreases for the other contract options. Similarly, smaller

values of tenuremonths increase the probability of churn and vice versa.

Example 7: Shutting down the H2O cluster
Once you are finished with your analysis, you can disconnect from the H2O cluster by using

. h2o disconnect

This command closes the H2O session between Stata and the cluster. However, the H2O cluster con-

tinues running in the background. Later in the same Stata session, you can type h2o connect to rebuild

the connection to it and reaccess the resources it contains. If you want to force shutting down the cluster,

you can type

. h2o shutdown, force

The above completely shuts down the cluster, and all resources within the cluster are lost, including

any data (H2O frames) it contained.

If you want the H2O cluster to remain connected but would like to clear everything in memory, in-

cluding all data in H2O frames, you can type

. h2o clear

https://www.stata.com/manuals/h2omlh2osetup.pdf#h2omlH2OsetupRemarksandexamplesCloseanddisconnecttheH2Ocluster

h2oml — Introduction to commands for Stata integration with H2O machine learning 27

Regression analysis

In this section, we demonstrate analysis for the regression problem using random forest.

Example 8: Data setup
Consider the Ames housing dataset (De Cock 2011), ameshouses.dta, also used in a Kaggle com-

petition, which describes residential houses sold in Ames, Iowa, between 2006 and 2010. It contains

about 80 housing (and related) characteristics such as home size, amenities, and location. This dataset is

often used for building predictive models for home sale price, saleprice. We will use random forest to

model home sale price and evaluate its predictive performance. Here we will use just a few predictors to

demonstrate some of the h2oml features.

Before putting the dataset into an H2O frame, we do several data transformations in Stata. In particular,

because saleprice is right-skewed (type histogram saleprice), we perform logarithmic transforma-

tion. We also generate the houseage variable, which records the age of the house at the time of a sales

transaction.

. use https://www.stata-press.com/data/r19/ameshouses
(Ames house data)
. generate logsaleprice = log(saleprice)
. generate houseage = yrsold - yearbuilt
. drop saleprice yearbuilt yrsold

We put the dataset into an H2O frame by using the h2oframe put command. We split the data into

training and validation frames (without a testing frame) with 75% of observations in the training frame.

. h2o init
(output omitted)

. _h2oframe put, into(house)
Progress (%): 0 100
. _h2oframe change house

. _h2oframe split house, into(train valid) split(0.75 0.25) rseed(19)

. _h2oframe change train

The steps of method selection and prediction for the regression are the same as for binary classifica-

tion, discussed in example 3 and example 4. Therefore, in this example, we focus only on tuning.

https://www.stata.com/manuals/h2omlh2omlrfregress.pdf#h2omlh2omlrfregress
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlextwo
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexthree

h2oml — Introduction to commands for Stata integration with H2O machine learning 28

Example 9: Regression using random forest
As we discussed in Model selection in machine learning of [H2OML] Intro, we start by defining a

reference model, which in our case is a random forest with default parameters. We use the MSE metric,

computed on validation frame, to evaluate the performance of the model.

The dataset has a total of 46 predictors, but for simplicity, we include only 10 and create a global

macro, predictors, in Stata to store the names of these predictors.

. global predictors overallqual grlivarea exterqual houseage garagecars
> totalbsmtsf stflrsf garagearea kitchenqual bsmtqual
. h2oml rfregress logsaleprice $predictors, h2orseed(19) validframe(valid)
Progress (%): 0 54.0 100
Random forest regression using H2O
Response: logsaleprice
Frame: Number of observations:

Training: train Training = 1,099
Validation: valid Validation = 361

Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 18 No. of bins cat. = 1,024
avg = 19.9 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Deviance .0283991 .0218303
MSE .0283991 .0218303

RMSE .1685202 .1477508
RMSLE .0130751 .0114914

MAE .1163998 .1042066
R-squared .8240197 .8577693

The description and interpretation of the output of random forest is provided in example 1 of

[H2OML] h2oml rf. The definitions of metrics can be found in [H2OML] metric option.

https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesModelselectioninmachinelearning
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionOptionsmse
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesThree-wayandtwo-wayholdoutmethods
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfdefault
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrf
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option

h2oml — Introduction to commands for Stata integration with H2O machine learning 29

The MSE for the validation frame is 0.022, which is our reference value for later. We also need to

make sure that we are slightly overfitting the training dataset. The above model does not overfit the

training dataset, because the training MSE is larger than the validation MSE. To visualize this, we plot the

validation curve using the h2omlgraph scorehistory command.

. h2omlgraph scorehistory
Training frame: train
Validation frame: valid

���

���

���

���

���

%
FW
JB
OD
F

� �� �� �� �� ��
/VNCFS�PG�USFFT

5SBJOJOH
7BMJEBUJPO

4DPSF�IJTUPSZ�VTJOH�)�0

We observe that the training error is higher than the validation error. This means that either the default

model is not complex enough to overfit the training dataset or we need more training data. In our case,

the former reason is more likely, because we used a simpler model with default hyperparameters, which

is sufficient for a reference model.

Example 10: Hyperparameter tuning using random forest
In this example, we explore different configurations of the hyperparameters to tune the random forest

model. In general, a well-tuned model substantially improves the model performance and generalizes

well to new data.

To demonstrate, we tune only two hyperparameters, the number of trees, ntrees(), and the minimum
number of observations required for splitting a leaf node, minobsleaf(), and use a small grid space with
a random grid search. In practice, hyperparameter tuning is an iterative process and often requires tuning

many more hyperparameters; see table 3 in [H2OML] Intro. When the number of hyperparameters and

the grid space are large, you can use the parallel() option to specify the number of models to build in

parallel during the grid search. Beware that the H2O results for models built in parallel may not always

be reproducible; see [H2OML]H2O reproducibility. By default, the models are built sequentially, which

may take some time for complicated tuning models.

https://www.stata.com/manuals/h2omlh2omlgraphscorehistory.pdf#h2omlh2omlgraphscorehistoryRemarksandexamples
https://www.stata.com/manuals/h2omlh2omlgraphscorehistory.pdf#h2omlh2omlgraphscorehistory
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexampleshyperparameter
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility

h2oml — Introduction to commands for Stata integration with H2O machine learning 30

. h2oml rfregress logsaleprice $predictors, h2orseed(19) validframe(valid)
> ntrees(400(50)500) minobsleaf(3(2)7)
> tune(grid(random, h2orseed(19)) metric(mse))
Progress (%): 0 100
Random forest regression using H2O
Response: logsaleprice
Frame: Number of observations:

Training: train Training = 1,099
Validation: valid Validation = 361

Tuning information for hyperparameters
Method: Random
Metric: MSE

Grid values
Hyperparameters Minimum Maximum Selected

Number of trees 400 500 450
Min. obs. leaf split 3 7 3

Model parameters
Number of trees = 450

actual = 450
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 12 No. of bins cat. = 1,024
avg = 15.1 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 3 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Deviance .0269402 .0208756
MSE .0269402 .0208756

RMSE .1641346 .144484
RMSLE .0127415 .0112297

MAE .1113531 .0995714
R-squared .83306 .8639893

To ensure H2O reproducibility, we specified h2orseed(19) for both the random forest model and

grid search. Despite tuning only a couple hyperparameters, we were able to reduce the validation MSE

metric from 0.022 to 0.021. To explore tuning further, you may try to include more hyperparameters and

consider a larger grid space.

h2oml — Introduction to commands for Stata integration with H2O machine learning 31

To compare different configurations of hyperparameters with their respective metric values sorted

from the most to least optimal, we can use the h2omlestat gridsummary command.

. h2omlestat gridsummary
Grid summary using H2O

Min. obs.
Number of leaf

ID trees split MSE

1 450 3 .0208756
2 500 3 .0209012
3 400 3 .020924
4 400 5 .021525
5 450 5 .0215336
6 500 5 .0215765
7 500 7 .0221419
8 400 7 .022142
9 450 7 .0221425

Here the hyperparameter values are listed from the smallest to largest MSE. If you want to reduce

execution time in favor of a slightly lower model performance, you may select the third model instead

of the first (top) model. For this model, the number of trees is 400 compared with 450 for the top model,

but the MSE value is only slightly higher. We can select the third model for further analysis by typing

. h2omlselect id = 3

Effect of categorical predictors

As we discussed in Decision trees of [H2OML] Intro, the ensemble decision tree methods are biased

toward categorical predictors with many levels. In this example, we explore the effect of a categorical

predictor with many levels on performance of tree-based methods. Even though we focus on a GBM here,

similar results should also hold for a random forest.

Example 11: Data setup
We use a subset of the Lending Club dataset available in Kaggle to explore this phenomenon. Kaggle

is a platform for the machine learning community that provides datasets and other resources; see https:

//kaggle.com.

We start by initializing an H2O cluster and importing the dataset as an H2O frame by using the h2o
init and h2oframe put commands.

. h2o init

. use https://www.stata-press.com/data/r19/loan
(Lending club data)
. _h2oframe put, into(loan)
Progress (%): 0 100

Next we use the h2oframe split command to split the dataset into training and validation frames

with 80% of observations in the training frame.

. _h2oframe split loan, into(train valid) split(0.8 0.2) rseed(19)

. _h2oframe change train

https://www.stata.com/manuals/h2omlh2omlestatgridsummary.pdf#h2omlh2omlestatgridsummary
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesDecisiontrees
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://kaggle.com
https://kaggle.com

h2oml — Introduction to commands for Stata integration with H2O machine learning 32

Example 12: Effect of categorical predictors on ensemble decision tree methods
Consider the categorical predictor addr state with 50 levels that records the state where the loan

applicant lives. To show the importance of carefully treating categorical variables when performing

ensemble decision tree methods, we first run a GBM without paying special attention to categorical pre-

dictors.

Let’s define a global macro, predictors, to store the names of the predictors.

. global predictors loan_amnt int_rate emp_length annual_inc dti delinq_2yrs
> revol_util total_acc credit_lngth term home_owner purpose addr_state
> verification

Next we use h2oml gbbinclass to perform gradient boosting binary classification. We perform

validation using the valid frame and specify the h2orseed() option for H2O reproducibility. We use

200 trees, and, to avoid overfitting, we request an early stopping based on the AUC metric. We also

specify scoreevery(1) to score the AUC metric after each tree is added to the model to ensure H2O

reproducibility in the presence of early stopping.

. h2oml gbbinclass bad_loan $predictors, h2orseed(19) validframe(valid)
> ntrees(200) stop(5, metric(auc)) scoreevery(1)
Progress (%): 0 1.4 5.0 10.9 18.0 100
Gradient boosting binary classification using H2O
Response: bad_loan
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 131,294
Validation: valid Validation = 32,693

Model parameters
Number of trees = 200 Learning rate = .1

actual = 39 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Stopping criteria: No. of iterations = 5

Metric: AUC Tolerance = .001
Metric summary

Metric Training Validation

Log loss .4256225 .4381805
Mean class error .3405512 .3471389

AUC .7264524 .7081155
AUCPR .3827862 .3495525

Gini coefficient .4529049 .4162309
MSE .1337261 .1384392

RMSE .3656858 .3720742

Note: Metric is scored after every tree.

h2oml — Introduction to commands for Stata integration with H2O machine learning 33

Let’s plot the variable importance by using the h2omlgraph varimp command.

. h2omlgraph varimp

UPUBM@BDD

FNQ@MFOHUI

SFWPM@VUJM

MPBO@BNOU

EUJ

QVSQPTF

UFSN

BOOVBM@JOD

BEES@TUBUF

JOU@SBUF

� �� �� �� �� ��
1SPQPSUJPO�JNQPSUBODF

7BSJBCMF�JNQPSUBODF�QMPU�VTJOH�)�0

The variable addr state is one of the important variables.

h2oml — Introduction to commands for Stata integration with H2O machine learning 34

Now to account for the many categories in addr state, we tune the hyperparameter binscat() on

a grid of values [16, 50].
. h2oml gbbinclass bad_loan $predictors, h2orseed(19) validframe(valid)
> ntrees(200) binscat(16(5)50) stop(5, metric(auc)) scoreevery(1)
> tune(grid(cartesian) metric(auc))
Progress (%): 0 100
Gradient boosting binary classification using H2O
Response: bad_loan
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 131,294
Validation: valid Validation = 32,693

Tuning information for hyperparameters
Method: Cartesian
Metric: AUC

Grid values
Hyperparameters Minimum Maximum Selected

No. of bins cat. 16 46 46

Model parameters
Number of trees = 200 Learning rate = .1

actual = 46 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 46
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Stopping criteria: No. of iterations = 5

Metric: AUC Tolerance = .001
Metric summary

Metric Training Validation

Log loss .4274797 .4368557
Mean class error .3422759 .3435895

AUC .7210886 .7100941
AUCPR .3725785 .3557051

Gini coefficient .4421772 .4201882
MSE .1344013 .1379741

RMSE .3666078 .3714487

Note: Metric is scored after every tree.

Based on the tuning information, the value of 46 for binscat() provides the highest AUC value.

h2oml — Introduction to commands for Stata integration with H2O machine learning 35

The variable importance graph for the selected best model, displayed below, shows that after account-

ing for the many levels of the categorical variable addr state, its importance has decreased substan-
tially.

. h2omlgraph varimp

UPUBM@BDD

FNQ@MFOHUI

BEES@TUBUF

SFWPM@VUJM

MPBO@BNOU

UFSN

EUJ

QVSQPTF

BOOVBM@JOD

JOU@SBUF

� �� �� ��
1SPQPSUJPO�JNQPSUBODF

7BSJBCMF�JNQPSUBODF�QMPU�VTJOH�)�0

Detecting nuisance predictors

Example 13: Detecting nuisance predictors with ensemble decision tree methods
Let’s use ensemble decision trees to detect important and nuisance predictors in the dataset. Here we

use a random forest, but the results should be similar for a GBM as well. We use a simulated dataset,

in which predictors important1 through important5 are important and noise1 through noise5 are

nuisance (random noise). For the data-generation details, see Wright, Ziegler, and König (2016).

We start by initializing an H2O cluster and importing the dataset as an h2oframe.
. use https://www.stata-press.com/data/r19/effect
(Simulated data with many nuisance predictors)
. h2o init
(output omitted)

. _h2oframe put, into(sim)
Progress (%): 0 100
. _h2oframe change sim

h2oml — Introduction to commands for Stata integration with H2O machine learning 36

Next we run a random forest binary classification with default hyperparameter values and plot the

variable importance.

. h2oml rfbinclass y important1-important5 noise1-noise45, h2orseed(19)
Progress (%): 0 47.9 100
Random forest binary classification using H2O
Response: y
Frame: Number of observations:

Training: sim Training = 1,000
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 15 No. of bins cat. = 1,024
avg = 18.6 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .6693054
Mean class error .3711672

AUC .689691
AUCPR .6739805

Gini coefficient .3793821
MSE .2227112

RMSE .4719228

. h2omlgraph varimp

OPJTF��

OPJTF��

OPJTF�

OPJTF�

OPJTF��

JNQPSUBOU�

JNQPSUBOU�

JNQPSUBOU�

JNQPSUBOU�

JNQPSUBOU�

��� ��� ��� ���
1SPQPSUJPO�JNQPSUBODF

7BSJBCMF�JNQPSUBODF�QMPU�VTJOH�)�0

All important predictors are in the top five, but the separation between the important and nuisance

predictors is not drastic. We can improve this by tuning the model.

h2oml — Introduction to commands for Stata integration with H2O machine learning 37

We use a 3-fold modulo cross-validation and 500 trees. For illustration purposes, we train only hy-

perparameters that control the depth or complexity of the tree, maxdepth(), and the number of training
samples used to build a tree, samprate(). We use the AUC metric for training.

. h2oml rfbinclass y important1-important5 noise1-noise45, h2orseed(19)
> cv(3,modulo) ntrees(500) maxdepth(5(1)7) samprate(0.4(0.1)0.6)
> tune(metric(auc))
Progress (%): 0 100
Random forest binary classification using H2O
Response: y
Frame: Number of observations:

Training: sim Training = 1,000
Cross-validation = 1,000

Cross-validation: Modulo Number of folds = 3
Tuning information for hyperparameters
Method: Cartesian
Metric: AUC

Grid values
Hyperparameters Minimum Maximum Selected

Max. tree depth 5 7 6
Sampling rate .4 .6 .5

Model parameters
Number of trees = 500

actual = 500
Tree depth: Pred. sampling value = -1

Input max = 6 Sampling rate = .5
min = 6 No. of bins cat. = 1,024
avg = 6.0 No. of bins root = 1,024
max = 6 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .6169953 .6233988
Mean class error .3141157 .340729

AUC .7528826 .7385296
AUCPR .7392935 .7251183

Gini coefficient .5057653 .4770591
MSE .2130054 .2160959

RMSE .4615251 .4648612

h2oml — Introduction to commands for Stata integration with H2O machine learning 38

From the tuning output, the respective selected best values for maxdepth() and samprate() are 6

and 0.5. Let’s plot the variable importance again.

OPJTF��

OPJTF��

OPJTF�

OPJTF��

OPJTF�

JNQPSUBOU�

JNQPSUBOU�

JNQPSUBOU�

JNQPSUBOU�

JNQPSUBOU�

� ��� �� ��� ��
1SPQPSUJPO�JNQPSUBODF

7BSJBCMF�JNQPSUBODF�QMPU�VTJOH�)�0

Now there is a clearer separation between the important and nuisance predictors.

Gradient boosting Poisson regression

Example 14: Explaining Poisson regression predictions
In example 7 of [H2OML] h2oml gbm, we demonstrated how to perform a gradient boosting Poisson

regression. In this example, we want to explain the Poisson regression predictions using that model. We

repeat some of the steps from that example below and fit the final model.

We start by initializing an H2O cluster, opening the dataset in Stata, and importing the dataset to an

H2O frame.

. h2o init
(output omitted)

. use https://www.stata-press.com/data/r19/runshoes
(Running shoes)
. _h2oframe put, into(runshoes)
Progress (%): 0 100
. _h2oframe change runshoes

https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmpoisson
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbm

h2oml — Introduction to commands for Stata integration with H2O machine learning 39

To perform a Poisson regression with h2oml gbregress, we specify the loss(poisson) option.

. h2oml gbregress shoes rpweek mpweek male age married trunning, h2orseed(19)
> loss(poisson)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: shoes
Loss: Poisson
Frame: Number of observations:

Training: runshoes Training = 60
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 2.9 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance .3649675
MSE 1.064175

RMSE 1.031589
RMSLE .2691122

MAE .7149171
R-squared .4885824

Next we explain the prediction for the first observation in the runshoes frame by using the

h2omlgraph shapvalues command; see [H2OML] h2omlgraph shapvalues. You can follow the same

steps to explain predictions for other observations.

. h2omlgraph shapvalues, obs(1) xlabel(0.6(0.1)1.5)

������

������

������

������

������

ƒ	Y
��������

&<ƒ	Y
>��������

NBSSJFE����

NBMF����

BHF�������

SQXFFL����

NQXFFL�������

1S
FE

JD
UP
S

�� �� �� �� � ��� ��� ��� ��� ���
4)"1�DPOUSJCVUJPO

0CT�������QSFEJDUJPO�����������
5SBJOJOH�GSBNF��SVOTIPFT

4)"1�WBMVFT�VTJOH�)�0

The blue bars represent predictors that increase the probability of purchasing running shoes, whereas

the red bars represent predictors that decrease it. For this observation, running 42.5 miles per week has

a positive effect on the number of shoes purchased, whereas an age of 29.5 has a negative effect.

https://www.stata.com/manuals/h2omlh2omlgraphshapvalues.pdf#h2omlh2omlgraphshapvalues

h2oml — Introduction to commands for Stata integration with H2O machine learning 40

We continue our analysis and produce a PDP for the predictors mpweek and age by using the

h2omlgraph pdp command.

. h2omlgraph pdp mpweek age, combineopts(cols(2))

���

�

���

�

1B
SUJ
BM
�E
FQ

FO
EF

OD
F

� �� �� ��
NQXFFL

���

���

���

���

���

1B
SUJ
BM
�E
FQ

FO
EF

OD
F

�� �� �� �� ��
BHF

5SBJOJOH�GSBNF��SVOTIPFT

1BSUJBM�EFQFOEFODF�QMPU�VTJOH�)�0

The PDP (red line) supports the previous result. Specifically, in the graph for age on the right, we

observe a noticeable decrease in PDP roughly between ages 25 and 30, which implies a negative effect of

age on buying running shoes. But after age 30, the effect is positive.

References
Davis, J., and M. Goadrich. 2006. “The relationship between precision-recall and ROC curves”. In Proceedings of the

23rd International Conference onMachine Learning, 233–240. NewYork: Association for ComputingMachinery. https:

//doi.org/10.1145/1143844.1143874.

De Cock, D. 2011. Ames, Iowa: Alternative to the Boston housing data as an end of semester regression project. Journal

of Statistics Education 19(3). https://doi.org/10.1080/10691898.2011.11889627.

Raschka, S. 2020. Model evaluation, model selection, and algorithm selection in machine learning. arXiv:1811.12808

[cs.LG], https://doi.org/10.48550/arXiv.1811.12808.

Valdenegro-Toro, M., and M. Sabatelli. 2023. “Machine learning students overfit to overfitting”. In Proceedings of the

Third Teaching Machine Learning and Artificial Intelligence Workshop, edited by K. M. Kinnaird, P. Steinbach, and

O. Guhr, vol. 207: 46–51. Clearwater Beach, FL: Proceedings of Machine Learning Research.

Wright, M. N., A. Ziegler, and I. R. König. 2016. Do little interactions get lost in dark random forests? BMC Bioinfor-

matics 17: art. 145. https://doi.org/10.1186/s12859-016-0995-8.

Also see
[H2OML] Intro — Introduction to machine learning and ensemble decision trees

[H2OML] Glossary
Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1080/10691898.2011.11889627
https://doi.org/10.48550/arXiv.1811.12808
https://doi.org/10.1186/s12859-016-0995-8
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlglossary.pdf#h2omlGlossary
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

